Synthesis of 1 H -Imidazoles by the Simple Ring Transformation of 5-Acylaminouracils and 5-Acylaminopyrimidin-4(3H)-ones ${ }^{1}$

Izumi Matsuura, Taisei Ueda, Nobutoshi Murakami, Shin-ichi Nagai and Jinsaku Sakakibara*
Faculty of Pharmaceutical Sciences, Nagoya City University, Tanabe-dori, Mizuho-ku, Nagoya 467,
Japan

Abstract

1,2-Disubstituted 4-alkylcarbamoyl-5-methyl-1H-imidazoles and 2-substituted 5-methyl-4-phenylcarbamoyl-1H-imidazoles were synthesized from 5-acylamino-6-methyluracils and 5-acylamino-6-methyl-3-phenylpyrimidin-4(3H) ones by treatment with sodium hydroxide in ethanol. In the case of 5 -acylaminopyrimidinones which possess an olefinic group in the acylamino group, $2-$ ethoxyethyl (or 2-ethoxypropyl)-5-methyl-4-phenylcarbamoyl-1H-imidazoles were prepared as major products and the corresponding 2 -alkenyl- 1 H -imidazoles were only minor products Compounds which contain an aryl function in their acylamino group gave glycine anilides as byproducts.

Various studies on the synthesis and reactivity of pyrimidines or pyrimidinones which have potential biological activity have been reported. ${ }^{2}$ However, the reactivity of pyrimidin- $4(3 \mathrm{H})$ ones is little known. In the course of medicinal and chemical studies of pyrimidinones in our laboratory, we discovered the ring transformation of 5 -amino-pyrimidin-4($3 H$)-ones into imidazoles by reaction with nitrous acid. ${ }^{3}$ Ring transformations of uracils or pyrimidinones have intrigued many organic chemists. ${ }^{4}$ During our investigation of the reactivity of uracils and pyrimidinones, we have encountered an interesting ring transformation of 5 -acylaminouracils and 5 -acylamino-pyrimidin-4(3H)-ones into 1 H -imidazoles in the presence of alkali in ethanol. Such a ring transformation seems useful for the syntheses of various 1 H -imidazoles.

In this paper we describe the synthesis of 1,2-disubstituted 4-alkylcarbamoyl-5-methyl-1 H -imidazoles and 2 -substituted 5-methyl-4-phenylcarbamoyl- 1 H -imidazoles by the simple ring transformation of 1,3-disubstituted 5-acylamino-6-methyluracils and 5-acylamino-6-methyl-3-phenylpyrimidin-4(3H)ones.

Results and Discussion

An examination of the stability of acyl derivatives of pyrimidinones in acid or alkaline medium was carried out first. The reaction of 1,3-disubstituted 5-acylamino-6-methyluracils 2 with 5% hydrochloric acid in ethanol gave deacylated products 1^{5} as expected, while attempted deacylation with 5% aq. sodium hydroxide in ethanol led to ring-transformed products, the 2substituted imidazoles 3 (Scheme 1). For instance, 5-acetamido-3,6-dimethyl-1-phenyluracil 2a gave 2,5-dimethyl-4-methyl-carbamoyl-1-phenyl- 1 H -imidazole 3 a in 81% yield. In the ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3a, two methyl signals ($\delta 2.20$ and 2.36) appeared at low field compared with the signals of the C-6 methyl group and acetamide group ($\delta 1.18$ and 2.20) of compound 2a. The MS spectrum gave the molecular ion peak at $m / z 229$, and the IR spectrum showed an absorption for a secondary amide at $3350 \mathrm{~cm}^{-1}$. We concluded that the structure of compound 3a was 2,5-dimethyl-4-methylcarbamoyl-1-phenyl- 1 H -imidazole. Elemental analysis gave results consistent with the assigned structure. Final confirmation was carried out by X-ray crystallographic analysis, which was reported in an earlier communication. ${ }^{1}$

[^0]

Reagents 1 Achoride, ii, $5{ }_{0} \mathrm{HC}, \mathrm{EtOH}$; iii $5 \% \mathrm{NaOH}, \mathrm{EtOH} \mathbf{a} ; \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}, \mathbf{b} ; \mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Me}$, $\mathrm{R}^{2}=\mathrm{Ph}, \mathbf{c} ; \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Ph}, \mathbf{d} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{Me}, \mathrm{e}$; $\mathrm{R}^{1}=\mathrm{R}^{3}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me}$.

a-c
Scheme 2 Reagents: i, $\mathrm{Ac}_{2} \mathrm{O}$, propionyl chloride, butyryl chloride, formic acid, acryloyl chloride, crotonyl chloride, benzoyl chloride, p toluoyl chloride, p-anisoyl chloride, p-nitrobenzoyl chloride, or chloroacetyl chloride ii, $5 \% \mathrm{NaOH}, \mathrm{EtOH} . \mathbf{a} ; \mathrm{R}=\mathrm{Me}^{6}{ }^{6} \mathbf{b} ; \mathrm{R}=\mathrm{Et}, \mathbf{c}$; $\mathbf{R}=\operatorname{Pr}, \mathbf{d} ; \mathbf{R}=\mathbf{H}, \mathbf{e} ; \mathbf{R}=\mathrm{CH}=\mathrm{CH}_{2}, \mathbf{f} ; \mathrm{R}=\mathrm{CH}=\mathrm{CHMe}, \mathbf{g} ; \mathbf{R}=\mathrm{Ph}, \mathbf{h} ;$ $\mathrm{R}=p-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathbf{i} ; \mathbf{R}=p-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathbf{j} \quad \mathrm{R}=p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, \mathbf{k} ; \mathbf{R}=$ $\mathrm{CH}_{2} \mathrm{Cl},{ }^{6} \mathrm{I} ; \mathrm{R}=\mathrm{CH}_{2} \mathrm{~N}(\mathrm{Me})_{2}{ }^{6}$

Our next interest was the examination of the similar transformation on 5-acylamino-6-methyl-3-phenylpyrimidin$4(3 H)$-ones $5 .+$ Treatment of compounds 5 a-c with 5% aq. sodium hydroxide in ethanol gave the corresponding 2 substituted 5-methyl-4-phenylcarbamoyl-1 H -imidazoles 6a-c, as expected (Scheme 2). Spectral and microanalytical data were consistent with the assigned structures. Treatment of 5 -form-amido-6-methyl-3-phenylpyrimidin- 4 (3 H) one 5 d with 5% aq. sodium hydroxide resulted in deacylation. Hydrolysis of the

Table 1 Yields of compounds $\mathbf{6 e}, \mathbf{6 f}, 7 \mathbf{7 a}, 7 \mathbf{b}$ and $\mathbf{7 c}$ under several alkaline conditions

Starting compound	Conditions	Products (yield)	
$\mathbf{5 e}$	5% aq. $\mathrm{NaOH}, \mathrm{EtOH}$	$\mathbf{6 e}(9 \%)$	$\mathbf{7 a}(46 \%)$
$\mathbf{5 f}$	5% aq. $\mathrm{NaOH}, \mathrm{EtOH}$	$\mathbf{6 f}(10 \%)$	$\mathbf{7 b}(35 \%)$
$\mathbf{5 e}$	20% aq. $\mathrm{NaOH}, \mathrm{EtOH}$	$\mathbf{6 e}(6 \%)$	$\mathbf{7 a}(54 \%)$
$\mathbf{5 f}$	20% aq. $\mathrm{NaOH}, \mathrm{EtOH}$	$\mathbf{6 f}(11 \%)$	$\mathbf{7 b}(35 \%)$
$\mathbf{5 e}$	20% aq. $\mathrm{NaOH}, \mathrm{Pr}^{\circ} \mathrm{OH}$	$\mathbf{6 e}(10 \%)$	$\mathbf{7 c}(38 \%)$
$\mathbf{5 e}$	20% aq. $\mathrm{NaOH}, \mathrm{Bu}{ }^{\dagger} \mathrm{OH}$	$\mathbf{6 e}(11 \%)$	
$\mathbf{5 e}$	10% ethanolic KOH	$\mathbf{6 e}(5 \%)$	$\mathbf{7 a}(67 \%)$
$\mathbf{5 f}$	10% ethanolic KOH	$\mathbf{6 f}(13 \%)$	$\mathbf{7 b}(69 \%)$

formyl group seems to be faster than the nucleophilic attack on C-2. Compounds $5 \mathbf{e}$ and \mathbf{f}, which contain a double bond in the acyl group, were similarly treated with 5% aq. sodium hydroxide in ethanol. However, the expected products 5 -methyl-3-phenylcarbamoyl-2-vinyl-1 H -imidazole 6e and 5-methyl-3-phenylcarbamoyl-2-(prop-1-enyl)-1 H -imidazole $\mathbf{6 f}$ were obtained in only poor yield ($5-13 \%$), and 2-(2-ethoxy-ethyl)-5-methyl-4-phenylcarbamoyl-1 H -imidazole 7a and 2-(2-ethoxypropyl)-5-methyl-4-phenylcarbamoyl-1 H -imidazole $\mathbf{7 b}$ were major products (Scheme 3). We reasoned that if bulky

6e; $\mathrm{R}=\mathrm{CH}=\mathrm{CH}_{2}$
6f; $\mathrm{R}=\mathrm{CH}=\mathrm{CHMe}^{2}$

7a; $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OEt}$
7b; $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OEt}) \mathrm{Me}$
7c; $\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}\left(\mathrm{CH}_{3}\right)_{2}$

Scheme 3 Reagent: i, alkali
alcohols such as propan-2-ol or t-butyl alcohol were used as the solvent instead of ethanol, Michael-type addition to the double bond might be suppressed and our hoped for products $6 e, f$ would be obtained in much better yield. However, yields of compounds $6 e$ and \mathbf{f} were not improved as shown in Table 1. Even with propan-2-ol as solvent the reaction of compound $\mathbf{5 e}$ with 20% sodium hydroxide gave 2 -(2-isopropoxyethyl)-5-methyl-4-phenylcarbamoyl-1 H -imidazole 7 c as the major product. In the case of t-butyl alcohol the reaction of compound $5 \mathbf{e}$ with 20% sodium hydroxide gave only compound $\mathbf{6 e}$ in 11% yield. When an ethanolic solution of potassium hydroxide was used instead of aq. sodium hydroxide in ethanol, the yields of compounds 7 a and 7 b were improved to 67 and 69%, respectively.

We further examined this transformation on compounds $\mathbf{5 g}-\mathbf{j}$ with aromatic acyl substituents. Treatment of compounds $\mathbf{5 g}$ and 5 h with 10% ethanolic potassium hydroxide gave imidazoles $\mathbf{6 g}(62 \%)$ and $\mathbf{6 h}(48 \%)$ accompanied by small amounts of by-products, N-benzoylglycine anilide $\mathbf{8 a}$ and N-(p toluoyl)glycine anilide $\mathbf{8 b}$, respectively. The ${ }^{1} \mathrm{H}$ NMR spectrum of compound 8a showed methylene protons at $\delta 4.41$ and 10 aromatic protons at 7.08-7.90. Its MS spectrum revealed peaks at $m / z 254\left(\mathrm{M}^{+}\right), 105\left(\mathrm{M}^{+}-\mathrm{NHCH}_{2} \mathrm{CONHPh}\right)$ and 93 ($\mathrm{M}^{+}-\mathrm{COCH}_{2} \mathrm{NHCOPh}^{2}$). Furthermore, compound 8a was identical with an authentic sample which was synthesized by the reaction of glycine anilide ${ }^{7}$ and benzoyl chloride. Reaction of compound $5 \mathbf{i}$ with 10% ethanolic potassium hydroxide afforded compound $\mathbf{6 i}(39 \%)$ and trace amounts of p-anisamide.* In the case of compound $\mathbf{5 j}$ the reaction gave compound $\mathbf{4}$ as the major product and the yield of the imidazole $\mathbf{6 j}$ was 25%. It seems that,

[^1]because of the electron-withdrawing effect of the nitro group of compound $\mathbf{5 j}$, the acyl carbonyl function is attacked much faster than the $\mathrm{C}-2$ position to give compound 4 . In the reaction of 5-(chloroacetamido)-6-methyl-3-phenylpyrimidin-4(3H)-one $\mathbf{5} \mathbf{k}^{6}$ with ethanolic potassium hydroxide, the chloro function was replaced with ethoxide anion to afford 2-(ethoxymethyl)-5-methyl-4-phenylcarbamoyl- 1 H -imidazole $\mathbf{6 k}$ in 39% yield and compound $4(33 \%)$. The expected 2 -chloromethyl-5-methyl-4-phenylcarbamoyl- 1 H -imidazole was not obtained. Transformation of 5 -[(dimethylamino)acetamido]-6-methyl-3-phenyl-pyrimidin-4(3 H)-one 51^{6} proceeded successfully to give 2 -(dimethylaminomethyl)-5-methyl-4-phenylcarbamoyl-1 H imidazole 61 in 91% yield (Scheme 4).

Scheme 4 Reagent: $\mathrm{i}, 10 \% \mathrm{KOH}, \mathrm{EtOH}$
A possible reaction mechanism for the transformation of 5acylaminopyrimidinones into imidazoles is given in Scheme 5. Initial nucleophilic attack of hydroxide ion at C-2 of pyrimidinones and the succeeding decarboxylation will give a ring-opened intermediate. Recyclization between the resulting imino group and the acylcarbonyl group via route a will give $1 H$-imidazoles. If the acylcarbonyl group is bulky and not electrophilic enough, e.g. benzoyl, p-toluoyl or p-methoxybenzoyl, glycine anilides will be formed via route b. The presence of electron-withdrawing groups in the acyl group gives rise to preferential deacylation.

Therefore the ring transformation described affords a new method for the preparation of 1 H -imidazoles from 5 -acylaminouracils or 5-acylaminopyrimidin-4-(3H)-ones in one step.

Experimental

M.p.s were determined with a Yanagimoto micro melting point apparatus and are uncorrected. IR spectra were measured with an IR-810 machine from Nihon Bunko Spectroscopic Co. Ltd. Mass spectra were measured with a JEOL JMS-DX 300 mass spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded with a JEOL JNM-MH-100, JNM-FX-100 or JNM-EX-270 spectrometer using tetramethylsilane as internal standard. J-Values are given

Scheme 5
in Hz . UV spectra were recorded on a Hitachi spectrophotometer.

5-Acetamido-3,6-dimethyl-1-phenyluracil 2a.-5-Amino-3,6-dimethyl-1-phenyluracil $1 \mathbf{a}^{5 a}(1 \mathrm{~g}, 4.33 \mathrm{mmol})$ was dissolved in acetic anhydride $\left(10 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 3 h . Cold water was added to the reaction mixture, which was extracted with chloroform. The extract was washed with brine and dried over anhydrous magnesium sulphate. The solvent was distilled off and the residue was purified by recrystallization to give compound $\mathbf{2 a}(1.146 \mathrm{~g}, 97 \%)$, m.p. $251-253^{\circ} \mathrm{C}$ (from benzene) (Found: $\mathrm{C}, 61.6 ; \mathrm{H}, 5.5 ; \mathrm{N}, 15.5$. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 61.53 ; \mathrm{H}, 5.53 ; \mathrm{N}, 15.38 \%$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3250(\mathrm{NH}), 1710$ and $1640(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.88(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.20(3 \mathrm{H}, \mathrm{s}, \mathrm{COMe}), 3.43$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $7.24-7.70(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH}) ; m / z 273\left(\mathrm{M}^{+}\right)$and $231\left(\mathrm{M}^{+}-\mathrm{COCH}_{3}\right)$.

5-Acetamido-1,6-dimethyl-3-phenyluracil 2b.-5-Amino-1,6-dimethyl-3-phenyluracil $\mathbf{1 b}^{5 a}(1 \mathrm{~g}, 4.33 \mathrm{mmol})$ was treated by the same procedure as described for compound 2a to give the isomer 2b $\left(1.158 \mathrm{~g}, 98 \%\right.$), m.p. $188-190^{\circ} \mathrm{C}$ (Found: C, $61.6 ; \mathrm{H}$, $5.3 ; \mathrm{N}, 15.4 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and $1630(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.12(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.28(3 \mathrm{H}, \mathrm{s}$, COMe), 3.52 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$) and 7.16-7.68 ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH}$); m / z $273\left(\mathrm{M}^{+}\right)$.

5-Benzamido-1,6-dimethyl-3-phenyluracil 2c.-To a solution of 5-amino-1,6-dimethyl-3-phenyluracil 1c ($\equiv \mathbf{1 b})^{5 a}(1 \mathrm{~g}, 4.33$ mmol) in chloroform ($100 \mathrm{~cm}^{3}$) were added potassium carbonate ($1.236 \mathrm{~g}, 8.96 \mathrm{mmol}$) and benzoyl chloride (547 mg , 3.89 mmol). The mixture was stirred at room temperature for 2 h, poured into ice-water, and extracted with EtOAc. The extract was washed with brine and dried over anhydrous magnesium sulphate. The solvent was distilled off and the residue was purified by recrystallization to give compound $2 \mathrm{c}(1.45 \mathrm{~g}, 93 \%)$, m.p. $281-283{ }^{\circ} \mathrm{C}$ (Found: C, 67.8; H, 5.1; N, 12.5. $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 68.05 ; \mathrm{H}, 5.11 ; \mathrm{N}, 12.53 \%$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3340$ $(\mathrm{NH}), 1700$ and $1650(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.32(3 \mathrm{H}$, $\mathrm{s}, 6-\mathrm{Me}), 3.56(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and $7.10-7.96(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH})$; $m / z 335\left(\mathbf{M}^{+}\right)$.

[^2]methyluracil $\mathbf{1 d}^{5 b}(1 \mathrm{~g}, 5.92 \mathrm{mmol})$ was treated by the same procedure as described for 2 a to give the amide $\mathbf{2 d}$ (1.248 g , 96%), m.p. $101-103{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 51.4 ; \mathrm{H}, 6.0$; N, 19.9. $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 51.18 ; \mathrm{H}, 6.20 ; \mathrm{N}, 19.89 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3280(\mathrm{NH}), 1700$ and $1650(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(100$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 2.17 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$), $2.21(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 3.36(3 \mathrm{H}$, s , NMe), 3.47 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$) and $7.28(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 211$ $\left(\mathrm{M}^{+}\right)$.

5-Benzamido-3,6-dimethyl-1-phenyluracil 2e.-5-Amino-3,6-dimethyl-1-phenyluracil $\mathbf{1 e}(\equiv \mathbf{1 a})^{5 a}(1 \mathrm{~g}, 4.33 \mathrm{mmol})$ was treated by the same procedure as described for compound $\mathbf{2 c}$ to give the benzamide $2 \mathrm{e}\left(1.349 \mathrm{~g}, 93 \%\right.$), m.p. $199-201^{\circ} \mathrm{C}$ (Found: C, 67.8; $\mathrm{H}, 5.2 ; \mathrm{N}, 12.3 . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 68.05 ; \mathrm{H}, 5.11 ; \mathrm{N}$, $12.53 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 1690$ and $1650(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.85(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 3.36(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe})$ and 7.16-7.92 $(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH}) ; m / z 335\left(\mathrm{M}^{+}\right)$and $230\left(\mathrm{M}^{+}-\right.$ COPh).
$\mathrm{N}^{\prime}, 2,5-$ Trimethyl-1-phenyl-1 H -imidazole-4-carboxamide 3a.-A mixture of compound 2a ($500 \mathrm{mg}, 1.83 \mathrm{mmol}$), 5% aq. sodium hydroxide ($5 \mathrm{~cm}^{3}$) and ethanol ($30 \mathrm{~cm}^{3}$) was refluxed for 3 h . After cooling, the reaction mixture was neutralized with 5% aq. hydrochloric acid and extracted with chloroform. The extract was dried over anhydrous magnesium sulphate and the solvent was distilled off. The residue was purified by recrystallization to give compound 3 a ($339 \mathrm{mg}, 81 \%$), m.p. $154-$ $156{ }^{\circ} \mathrm{C}$ (from benzene) (Found: C, 68.15; H, 6.6; N, 18.2. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 68.10 ; \mathrm{H}, 6.59 ; \mathrm{N}, 18.33 \%$); $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and $1630(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 243$ $(\varepsilon 12400) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.20(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.36$ (3 H, s, 2-Me), 2.95 ($3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}$) and $6.90-7.78$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH}$); $m / z 229\left(\mathrm{M}^{+}\right)$.

1,2,5-Trimethyl- N^{\prime}-phenyl-1 H -imidazole-4-carboxamide $\mathbf{3} \mathbf{b}$.Compound $\mathbf{2 b}$ ($500 \mathrm{mg}, 1.83 \mathrm{mmol}$) was treated by the same procedure as described for compound 3a to give the amide $\mathbf{3 b}$ ($294 \mathrm{mg}, 70 \%$), m.p. $171-173{ }^{\circ} \mathrm{C}$ (Found: $68.3 ; \mathrm{H}, 6.5 ; \mathrm{N}, 18.1 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 3290 \quad(\mathrm{NH})$ and $1660 \quad(\mathrm{C}=\mathrm{O}) ; \quad \lambda_{\text {max }}(\mathrm{Et}-$ $\mathrm{OH}) / \mathrm{nm} 270(\varepsilon 24300) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.36(3 \mathrm{H}, \mathrm{s}$, $2-\mathrm{Me}), 2.56(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 3.43(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.96-7.80(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph})$ and $9.02(1 \mathrm{H}$, br s, NH$) ; m / z 229\left(\mathrm{M}^{+}\right)$and $137\left(\mathrm{M}^{+}-\right.$ NHPh).

1,5-Dimethyl-2, N^{\prime}-diphenyl-1H-imidazole-4-carboxamide

 3c.-Compound $2 \mathbf{c}(500 \mathrm{mg}, 1.49 \mathrm{mmol})$ was treated by the same procedure as described for compound 3 a to give the amide $\mathbf{3 c}$ ($317 \mathrm{mg}, 73 \%$), m.p. $164-166^{\circ} \mathrm{C}$ (Found: C, $74.4 ; \mathrm{H}, 5.8 ; \mathrm{N}, 14.4$. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 74.21 ; \mathrm{H}, 5.88 ; \mathrm{N}, 14.42 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and $1680(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 272 ($\varepsilon 30400$); $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.67(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me})$, $3.56(3 \mathrm{H}, \mathrm{s}, \mathrm{NMe}), 6.92-7.08(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $9.08(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{NH}) ; m / z 291\left(\mathrm{M}^{+}\right)$and $199\left(\mathrm{M}^{+}-\mathrm{NHPh}\right)$.$\mathrm{N}^{\prime}, 1,2,5$-Tetramethyl-1H-imidazole-4-carboxamide $\mathbf{3 d}$ Compound $2 \mathbf{2 d}(500 \mathrm{mg}, 2.37 \mathrm{mmol})$ was treated by the same procedure as described for compound 3a to give compound 3d ($174 \mathrm{mg}, 44 \%$), m.p. $169-170^{\circ} \mathrm{C}$ (Found: C, $57.6 ; \mathrm{H}, 7.78 ; \mathrm{N}$, 25.1. $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 57.46 ; \mathrm{H}, 7.84 ; \mathrm{N}, 25.13 \%$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3360(\mathrm{NH})$ and $1640(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) /$ $\mathrm{nm} 244(\varepsilon 10800) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.34(3 \mathrm{H}, \mathrm{s}, 5-$ Me), 2.54 ($3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}$), 2.92 ($3 \mathrm{H}, \mathrm{d}, J 5$, NHMe), 3.43 ($3 \mathrm{H}, \mathrm{s}$, $\mathrm{NMe})$ and $7.01(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 211\left(\mathrm{M}^{+}\right)$.

N',5-Dimethyl-1,2-diphenyl-1H-imidazole-4-carboxamide 3e.-Compound $2 \mathbf{e}$ ($500 \mathrm{mg}, 1.49 \mathrm{mmol}$) was treated by the same procedure as described for compound 3a to give the amide
$3 \mathrm{e}\left(148 \mathrm{mg}, 34 \%\right.$), m.p. $220-221^{\circ} \mathrm{C}$ (Found: C, $74.0 ; \mathrm{H}, 5.9$; N, 14.4. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 74.21 ; \mathrm{H}, 5.88 ; \mathrm{N}, 14.42 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and $1650(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ 255 ($\varepsilon 14100$); $\delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.45(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 3.00(3$ H, d, J 5.3, NHMe) and 7.17-7.83 (11 H, m, Ph, NH); $m / z 291$ $\left(\mathrm{M}^{+}\right)$.

6-Methyl-3-phenyl-5-propionamidopyrimidin-4(3H)-one 5b.Potassium carbonate ($1.854 \mathrm{~g}, 13.43 \mathrm{mmol}$) and propionyl chloride ($622 \mathrm{mg}, 6.72 \mathrm{mmol}$) were added to a solution of compound 4 ($900 \mathrm{mg}, 4.48 \mathrm{mmol}$) in chloroform. The mixture was stirred at room temperature for 5 h , poured into cold water, and extracted with chloroform ($30 \mathrm{~cm}^{3}$). The extract was washed with saturated aq. sodium hydrogen carbonate and dried over anhydrous magnesium sulphate. The solvent was distilled off and the residue was purified by silica gel column chromatography and elution with ethyl acetate to give compound 5b ($1.047 \mathrm{~g}, 91 \%$), m.p. $143-145{ }^{\circ} \mathrm{C}$ (from EtOH) (Found: C, 65.7; H, 6.0; N, 16.45. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C , $65.36 ; \mathrm{H}, 5.58 ; \mathrm{N}, 16.33 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3450(\mathrm{NH}), 1680$ and $1655(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.24(3 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 2.33(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.43\left(2 \mathrm{H}, \mathrm{q}, J 7.5, \mathrm{CH}_{2} \mathrm{Me}\right), 7.33-$ $7.57(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH})$ and $8.01(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; m / z 257\left(\mathrm{M}^{+}\right)$and $201\left(\mathrm{M}^{+}-\mathrm{COCH}_{2} \mathrm{CH}_{3}\right)$.

5-Butyramido-6-methyl-3-phenylpyrimidin-4(3H)-one $5 \mathbf{5 c}$.Compound 4 ($900 \mathrm{mg}, 4.48 \mathrm{mmol}$) and butyryl chloride were treated by the same procedure as described for compound $\mathbf{5 b}$ to give the amide $5 \mathrm{c}\left(1.128 \mathrm{~g}, 93 \%\right.$), m.p. $142-144^{\circ} \mathrm{C}$ (Found: C, $66.65 ; \mathrm{H}, 6.2 ; \mathrm{N}, 15.5$. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.40 ; \mathrm{H}, 6.32 ; \mathrm{N}$, $15.49 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3430(\mathrm{NH}), 1680$ and $1655(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(270 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.02\left(3 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 1.76(2$ $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 2.33(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 2.40(2 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right), 7.33(1 \mathrm{H}, \mathrm{br}$ s, NH), $7.36-7.57(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$ and $8.04(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; m / z 271\left(\mathrm{M}^{+}\right)$and $201\left(\mathrm{M}^{+}-\right.$ $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$).

5-Formamido-6-methyl-3-phenylpyrimidin-4(3H)-one 5d.-A mixture of compound $4(600 \mathrm{mg}, 2.99 \mathrm{mmol})$ and formic acid (7 cm^{3}) was stirred at room temperature for 1.5 h . Excess of formic acid was distilled off. The residue was purified by silica gel column chromatography and elution with ethyl acetate to give compound 5d ($417 \mathrm{mg}, 61 \%$), m.p. 150-152 ${ }^{\circ} \mathrm{C}$ (Found: C, 62.6; $\mathrm{H}, 4.7$; $\mathrm{N}, 18.2 . \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 62.88 ; \mathrm{H}, 4.84 ; \mathrm{N}$, $18.33 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440(\mathrm{NH})$ and $1660(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}$ ($270 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $2.37(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 7.34-7.55(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, $7.71(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 8.04(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.36(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}) ; m / z$ $229\left(\mathrm{M}^{+}\right)$and $201\left(\mathrm{M}^{+}-\mathrm{CHO}\right)$.

5-Acrylamido-6-methyl-3-phenylpyrimidin-4(3H)-one $\mathbf{5 e} .-$ Compound $4(600 \mathrm{mg}, 2.99 \mathrm{mmol})$ and acryloyl chloride were treated by the same procedure as described for compound $\mathbf{5 b}$ to give the amide 5 e ($738 \mathrm{mg}, 97 \%$), m.p. $170-172^{\circ} \mathrm{C}$ (Found: C, 65.7; H, 5.1; N, 16.5. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, $65.87 ; \mathrm{H}, 5.13 ; \mathrm{N}$, $16.46 \%) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3425(\mathrm{NH}), 1680$ and $1655(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.33(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me})$, $5.68(1 \mathrm{H}, \mathrm{dd}, J 3.9$, 8.3, $\mathrm{CH}=\mathrm{CH}_{2}$), 6.30 and 6.33 (each 1 H , each d, $J 8.3$ and 3.9 , $\left.\mathrm{CH}=\mathrm{CH}_{2}\right), 7.26-7.56(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.04(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$ and $8.17(1$ $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m /=255\left(\mathrm{M}^{+}\right)$.

5-Crotonamido-6-methyl-3-phenylpyrimidin-4(3H)-one 5f.-Compound 4 ($650 \mathrm{mg}, 3.23 \mathrm{mmol}$) and crotonyl chloride were treated by the same procedure as described for compound $\mathbf{5 b}$ to give the amide 5f ($844 \mathrm{mg}, 97 \%$), m.p. $150-152^{\circ} \mathrm{C}$ (Found: C, 67.0: H, 5.3: $\mathrm{H}, 5.3: \mathrm{N}, 15.7 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 66.90 ; \mathrm{H}$, 5.61: N, $\left.15.60^{\circ}{ }_{\%}\right) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440(\mathrm{NH}), 1680$ and 1650 $(\mathrm{C}=\mathrm{O}): \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.90(3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH}=\mathrm{CHMe})$, $2.35(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 6.02(1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{CH}=\mathrm{CHMe}), 6.91(1 \mathrm{H}, \mathrm{m}$,
$\mathrm{CH}=\mathrm{CHMe}), 7.29-7.56(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH})$ and $8.01(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H})$; $m / z 269\left(\mathrm{M}^{+}\right)$.

5-Benzamido-6-methyl-3-phenylpyrimidin-4(3H)-one 5g.Compound $4(650 \mathrm{mg}, 3.23 \mathrm{mmol})$ and benzoyl chloride were treated by the same procedure as described for compound $\mathbf{5 b}$ to give the amide 5 g ($906 \mathrm{mg}, 98 \%$), m.p. $123-124^{\circ} \mathrm{C}$; (Found: C, 70.6; $\mathrm{H}, 4.9 ; \mathrm{N}, 13.9 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 70.81 ; \mathrm{H}, 4.95$; N , $13.76 \%) v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3425(\mathrm{NH}), 1660$ and $1650(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.43(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 7.26-7.98(11 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}, \mathrm{NH})$ and $8.06(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; m / z 305\left(\mathrm{M}^{+}\right)$.

6-Methyl-3-phenyl-5-(p-toluamido)pyrimidin-4(3H)-one $\mathbf{5 h}$.Compound 4 ($600 \mathrm{mg}, 2.99 \mathrm{mmol}$) and p-toluoyl chloride were treated by the same procedure as described for compound $\mathbf{5 b}$ to give the amide $5 \mathrm{~h}\left(914 \mathrm{mg}, 96 \%\right.$), m.p. $126-128^{\circ} \mathrm{C}$ (Found: C, 71.5; $\mathrm{H}, 5.2 ; \mathrm{N}, 13.1 . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.46 ; \mathrm{H}, 5.37 ; \mathrm{N}$, $13.16 \%)$; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3470(\mathrm{NH}), 1660$ and $1650(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.42\left(6 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}\right.$ and $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}\right), 7.26-$ $7.87(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, \mathrm{NH})$ and $8.05(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \mathrm{m} / \mathrm{z} 319\left(\mathrm{M}^{+}\right)$.

5-(p-Anisamido)-6-methyl-3-phenylpyrimidin-4(3H)-one 5 Fi .Compound $4(600 \mathrm{mg}, 2.99 \mathrm{mmol})$ and p-anisoyl chloride were treated by the same procedure as described for compound $5 \mathbf{b}$ to give the amide $5 \mathrm{i}\left(950 \mathrm{mg}, 95 \%\right.$), m.p. $122-124{ }^{\circ} \mathrm{C}$ (Found: C, 67.8; $\mathrm{H}, 5.0 ; \mathrm{N}, 12.45 . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires C, $68.05 ; \mathrm{H}, 5.11$; $\mathrm{N}, 12.53 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 3450(\mathrm{NH}), 1660$ and 1650 $(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.41(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me}), 3.87(3 \mathrm{H}, \mathrm{s}$, $\mathrm{OMe}), 6.92-7.94(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, \mathrm{NH})$ and $8.04(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; m / z$ $335\left(\mathrm{M}^{+}\right)$.

6-Methyl-5-(p-nitrobenzamido)-3-phenylpyrimidin-4(3H)-one 5 j.-Compound $4(500 \mathrm{mg}, 2.49 \mathrm{mmol})$ and p-nitrobenzoyl chloride were treated by the same procedure as described for compound 5b to give the amide $5 \mathbf{j}(827 \mathrm{mg}, 92 \%$), m.p. 131$133{ }^{\circ} \mathrm{C}$ (Found: C, $61.5 ; \mathrm{H}, 4.2 ; \mathrm{N}, 15.8 . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires C, 61.71; H, 4.03; N, 15.99%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440(\mathrm{NH}), 1670$ and $1650(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.42(3 \mathrm{H}, \mathrm{s}, 6-\mathrm{Me})$, 7.37-7.57 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$) and 8.05-8.32 ($6 \mathrm{H}, \mathrm{m}, p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}, 2-\mathrm{H}$, NH); $m / z 350\left(\mathrm{M}^{+}\right)$and $200\left(\mathrm{M}^{+}-\mathrm{COPh}-\mathrm{NO}_{2}\right)$.

2,5-Dimethyl- N^{\prime}-phenyl-1 H -imidazole-4-carboxamide 6a.--5-Acetamido-6-methyl-3-phenylpyrimidin-4-(3H)-one 5a ${ }^{6}$ (350 $\mathrm{mg}, 1.44 \mathrm{mmol}$) was treated by the same procedure as described for compound 3a to give the amide $\mathbf{6 a}(247 \mathrm{mg}, 81 \%)$, m.p. $152-$ $154{ }^{\circ} \mathrm{C}$ (from hexane-EtOAc) (Found: C, 66.9; H, 6.1; N, 19.2. $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires C, $66.95 ; \mathrm{H}, 6.09 ; \mathrm{N}, 19.52 \%$); $v_{\text {max }}{ }^{-}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and $1645(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 269$ ($\varepsilon 23800$); $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.38(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{Me}), 2.58$ (3 $\mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 7.07-7.71(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.74(1 \mathrm{H}, \mathrm{br}$ s, NH) and 8.96 $(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH}) ; m / z 215\left(\mathrm{M}^{+}\right)$.

2-Ethyl-5-methyl- N^{\prime}-phenyl-1 H -imidazole-4-carboxamide

6b.-Compound 5b ($300 \mathrm{mg}, 1.17 \mathrm{mmol}$) was treated by the same procedure as described for compound 3a to give the amide
 N , 18.3. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires C , $68.10 ; \mathrm{H}, 6.59 ; \mathrm{N}$, $18.33 \%) ; \quad v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 3375(\mathrm{NH})$ and $1650(\mathrm{C}=\mathrm{O})$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \quad 270 \quad(\varepsilon \quad 22200) ; \quad \delta_{\mathrm{H}}\left(\begin{array}{llll}100 & \mathrm{MHz} ; & \left.\mathrm{CDCl}_{3}\right)\end{array}\right.$ $1.32\left(3 \mathrm{H}, \mathrm{t}, J 8, \mathrm{CH}_{2} \mathrm{Me}\right), 2.57(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.70(2 \mathrm{H}, \mathrm{q}, J 8$, $\left.\mathrm{CH}_{2} \mathrm{Me}\right), 7.06-7.71(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and 9.25 (1 $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m /=229\left(\mathrm{M}^{+}\right)$and $137\left(\mathrm{M}^{+}-\mathrm{NHPh}\right)$.

5-Methyl- N^{\prime}-phenyl-2-propyl-1H-imidazole-4-carboxamide

 6c.-Compound 5 c ($350 \mathrm{mg}, 1.29 \mathrm{mmol}$) was treated by the same procedure as described for compound 3a to give the amide 6c ($223 \mathrm{mg}, 71 \%$), m.p. $179-180^{\circ} \mathrm{C}$ (from hexane-EtOAc); (Found: C, 68.8; H, 7.2; N, 17.0. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ requires C, 69.11;$\mathrm{H}, 7.04 ; \mathrm{N}, 17.27 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3360(\mathrm{NH})$ and 1645 $(\mathrm{C}=\mathrm{O}) ; \quad \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \quad 271 \quad(\varepsilon \quad 23600) ; \quad \delta_{\mathrm{H}}(100 \quad \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, $1.77(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}$), $2.59(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.66\left(2 \mathrm{H}, \mathrm{t}, J 8, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Me}\right)$, 7.08-7.72 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.04(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $9.36(1 \mathrm{H}$, br s, $\mathrm{NH}) ; m / z 243\left(\mathrm{M}^{+}\right)$and $151\left(\mathrm{M}^{+}-\mathrm{NHPh}\right)$.

5-Methyl- N^{\prime}-phenyl-2-vinyl-1H-imidazole-4-carboxamide 6e and 2-(2-Ethoxyethyl)-5-methyl- N^{\prime}-phenyl-1 H-imidazole-4carboxamide $7 \mathbf{7 a}$.-A solution of compound $5 \mathbf{e}(200 \mathrm{mg}, 0.78$ mmol) in 10% ethanolic potassium hydroxide ($20 \mathrm{~cm}^{3}$) was refluxed for 4.5 h . After cooling, the reaction mixture was neutralized with 5% aq. hydrochloric acid and extracted with ethyl acetate. The extract was washed with brine and dried over anhydrous magnesium sulphate. Solvent was distilled off and the residue was subjected to column chromatography on silica gel and elution with hexane-ethyl acetate $(1: 2)$ to give the title amides $\mathbf{6 e}$ and 7a.

Compound 6e: $\left(9 \mathrm{mg}, 5 \%\right.$), m.p. $118-119{ }^{\circ} \mathrm{C}$ (from hexaneEtOAc) (Found: M^{+}, 227.1058. $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$ requires M , 227.1058); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3430$ and $3395(\mathrm{NH})$, and 1655 $(\mathrm{C}=\mathrm{O}) ; \quad \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} \quad 281 \quad\left(\begin{array}{ll}\varepsilon & 23600) ; \quad \delta_{\mathrm{H}}(100 \quad \mathrm{MHz} \text {; }\end{array}\right.$ $\left.\mathrm{CDCl}_{3}\right) 2.63(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 5.45$ and 5.85 (each 1 H , each d, $J 11$ and $\left.18, \mathrm{CH}=\mathrm{CH}_{2}\right), 6.57\left(1 \mathrm{H}\right.$, dd, $J 11$ and $\left.18, \mathrm{CH}=\mathrm{CH}_{2}\right), 7.08-$ $7.72(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $9.35(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $m / z 227\left(\mathrm{M}^{+}\right)$and $135\left(\mathrm{M}^{+}-\mathrm{NHPh}\right)$.

Compound 7a: ($143 \mathrm{mg}, 67 \%$), glutinous oil (Found: M^{+}, 273.1479. $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{M}, 273.1478$); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3400(\mathrm{NH})$ and $1655(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 270(\varepsilon$ $21300) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OCH}_{2} \mathrm{Me}\right)$, $2.57(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.93\left(2 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OEt}\right), 3.53(2 \mathrm{H}$, $\left.\mathrm{q}, J 7, \mathrm{OCH} \mathrm{O}_{2} \mathrm{Me}\right), 3.69\left(2 \mathrm{H}, \mathrm{t}, J 5.5, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OEt}\right), 7.36(5 \mathrm{H}, \mathrm{m}$, $\mathrm{Ph}), 8.97(1 \mathrm{H}, \mathrm{brs}, \mathrm{NH})$ and $9.72(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 273\left(\mathrm{M}^{+}\right)$ and $181\left(\mathrm{M}^{+}-\mathrm{NHPh}\right)$.

5-Methyl- N^{\prime}-phenyl-2-(prop-1-enyl)-1H-imidazole-4-carboxamide $6 \mathbf{f}$ and 2-(2-Ethoxypropyl)-5-methyl- N^{\prime}-phenyl-1H-imida-zole-4-carboxamide $\mathbf{7 b}$.-A solution of compound $\mathbf{5 f} \mathbf{~ (~} 250 \mathrm{mg}$, 0.93 mmol) in 10% ethanolic potassium hydroxide ($20 \mathrm{~cm}^{3}$) was treated by the same procedure as described above to give the title compounds $\mathbf{6 f}$ and $7 \mathbf{7 b}$.

Compound 6f: ($29 \mathrm{mg}, 13 \%$), m.p. $125-127^{\circ} \mathrm{C}$ (from hexaneEtOAc) (Found: M^{+}, 241.1217. $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires M , 241.1215); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3440$ and $3370(\mathrm{NH})$ and 1645 $(\mathrm{C}=\mathrm{O}) ; \quad \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \quad 283 \quad(\varepsilon \quad 28300) ; \quad \delta_{\mathrm{H}}(100 \quad \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 1.92(3 \mathrm{H}, \mathrm{d}, J 5, \mathrm{CH}=\mathrm{CH} M e), 2.61(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 6.28(1$ $\mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{C} H \mathrm{Me}), 6.92-7.84(6 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$ and $\mathrm{CH}=\mathrm{CHMe}), 9.04$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}$) and $9.30(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 241\left(\mathrm{M}^{+}\right)$and 149 (M^{+}- NHPh).

Compound 7b: (184 mg, 69\%), glutinous oil (Found: \mathbf{M}^{+}, 287.1636. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\left.\mathrm{M}, 287.1634\right)$; $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1}$ $3400(\mathrm{NH})$, and $1600(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 270(\varepsilon 29400)$; $\delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.20(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CHMe}), 1.23(3 \mathrm{H}, \mathrm{t}$, $\left.J 7, \mathrm{OCH}_{2} \mathrm{Me}\right), 2.59(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.84[2 \mathrm{H}, \mathrm{d}, J 7$, $\left.\mathrm{CH}_{2} \mathrm{CH}(\mathrm{OEt}) \mathrm{Me}\right], 3.55\left(2 \mathrm{H}, \mathrm{m}, \mathrm{OCH}_{2} \mathrm{Me}\right), 3.60[1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{OCH}_{2} \mathrm{CH}(\mathrm{OEt}) \mathrm{Me}\right], 7.05-7.73(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.94(1 \mathrm{H}$, br s, NH) and $9.61(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{NH}) ; m / z 287\left(\mathrm{M}^{+}\right)$and $195\left(\mathrm{M}^{+}\right.$ -NHPh)

2-(2-Isopropoxyethyl)-5-methyl- N^{\prime}-phenyl-1 H -imidazole-4-

 carboxamide 7c.-A mixture of compound 5 e ($250 \mathrm{mg}, 0.98$ mmol), $20^{\circ}{ }_{\mathrm{o}}$ aq. sodium hydroxide ($5 \mathrm{~cm}^{3}$) and propan-2-ol (25 cm^{3}) was refluxed for 5 h and treated by the same procedure as described for compound 7a to give the amide 7 c ($107 \mathrm{mg}, 38 \%$) as a glutinous oil (Found: $\mathrm{M}^{+}, 287.1637 . \mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires M, 287.1634); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3390(\mathrm{NH})$ and $1660(\mathrm{C}=\mathrm{O})$; $i_{\max }(\mathrm{EtOH}) / \mathrm{nm} 270(\varepsilon 24300) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.18(6 \mathrm{H}$, $\left.\mathrm{d}, J 6.4, \mathrm{CH} M e_{2}\right), 2.56(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 2.90(2 \mathrm{H}, \mathrm{t}, J 5.9$,$\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 3.60\left(1 \mathrm{H}, \mathrm{m}, \mathrm{CH} \mathrm{Me}_{2}\right), 3.70(2 \mathrm{H}, \mathrm{t}, J 5.9$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}\right), 7.71-7.05(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $9.90(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m_{/} /=287\left(\mathrm{M}^{+}\right)$and $195\left(\mathrm{M}^{+}-\mathrm{NHPh}\right)$.

5-Methyl- $\mathrm{N}^{\prime}, 2$-diphenyl-1 H -imidazole-4-carboxamide $\mathbf{6 g}$ and N-Benzoylglycine Anilide 8a.-A mixture of compound 5g (200 $\mathrm{mg}, 0.66 \mathrm{mmol}$) and 10% ethanolic potassium hydroxide (15 cm^{3}) was refluxed for 8 h . After cooling, the reaction mixture was neutralized with $5 \% \mathrm{HCl}$ and extracted with ethyl acetate. The extract was washed with brine and dried. Solvent was distilled off and the residue was subjected to column chromatography on silica gel and elution with hexane-ethyl acetate ($1: 1$) to give the title compounds $\mathbf{6 g}$ and $\mathbf{8 a}$.

Compound 6g: ($113 \mathrm{mg}, 62 \%$), m.p. 244-246 ${ }^{\circ} \mathrm{C}$ (from hexaneEtOAc) (Found: C, 73.5; H, 5.2; N, 15.3. $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}$ requires C, $73.63 ; \mathrm{H}, 5.45 ; \mathrm{N}, 15.15 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3345(\mathrm{NH}), 1660$ and $1645(\mathrm{C}=\mathrm{O}) ; \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} 288\left(\varepsilon_{\mathrm{H}} 23000\right) ; \delta_{\mathrm{H}}(270$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) 2.68 ($3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}$), $7.07-8.12(10 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 9.18$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $9.60(1 \mathrm{H}, \mathrm{br} s, \mathrm{NH}) ; m / z 277\left(\mathrm{M}^{+}\right)$and 185 ($\mathrm{M}^{+}-\mathrm{NHPh}$).

Compound 8a: ($18 \mathrm{mg}, 11 \%$), m.p. 217-219 ${ }^{\circ} \mathrm{C}$ (from EtOAc) (Found: $\mathrm{C}, 70.8 ; \mathrm{H}, 5.2 ; \mathrm{N}, 10.9 . \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C , $70.85 ; \mathrm{H}, 5.55 ; \mathrm{N}, 11.02 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3310(\mathrm{NH}), 1680$ and 1640 (amide $\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(100 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 4.41(2 \mathrm{H}, \mathrm{d}, J$ $\left.5, \mathrm{CH} \mathrm{N}_{2} \mathrm{NH}\right), 7.08-7.90(11 \mathrm{H}, \mathrm{m}, \mathrm{Ph}, \mathrm{NH})$ and $9.08(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$; $m / z 254\left(\mathrm{M}^{+}\right), 105\left(\mathrm{M}^{+}-\mathrm{NHCH}_{2} \mathrm{CONHPh}\right)$ and $93\left(\mathrm{M}^{+}-\right.$ $\mathrm{COCH}_{2} \mathrm{NHCOPh}^{2}$). This compound was identical with an authentic sample described below.

Synthesis of Authentic Sample 8a.-Potassium carbonate ($879 \mathrm{mg}, 6.37 \mathrm{mmol}$) and benzoyl chloride ($449 \mathrm{mg}, 3.20 \mathrm{mmol}$) were added to a solution of glycine anilide ${ }^{7}$ ($318 \mathrm{mg}, 2.12 \mathrm{mmol}$) in chloroform $\left(30 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 4 h , poured into ice-water, and extracted with chloroform. The extract was washed with brine and dried over anhydrous magnesium sulphate. Solvent was distilled off and the residue was purified by column chromatography on silica gel, with hexane-EtOAc ($1: 1$) as solvent to give compound $\mathbf{8 a}$ ($512 \mathrm{mg}, 95 \%$).

5-Methyl- N^{\prime}-phenyl-2-(p-tolyl)-1H-imidazole-4-carboxamide 6h and N -(p-Toluoyl)glycine Anilide $\mathbf{8 b}$.-A mixture of compound $5 \mathrm{~h}(200 \mathrm{mg}, 0.63 \mathrm{mmol})$ and 10% ethanolic potassium hydroxide $\left(12 \mathrm{~cm}^{3}\right)$ was treated by the same procedure as described for compounds $\mathbf{6 g}$ and 8 a to give the title compounds $\mathbf{6 h}$ and $\mathbf{8 b}$.

Compound 6h: ($88 \mathrm{mg}, 48 \%$), m.p. $250-251^{\circ} \mathrm{C}$ (from hexaneEtOAc) (Found: C, $73.95 ; \mathrm{H}, 5.9 ; \mathrm{N}, 14.5 . \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}$ requires C, $74.21 ; \mathrm{H}, 5.88 ; \mathrm{N}, 14.42 \%$); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{NH}), 1665$ and $1645(\mathrm{C}=\mathrm{O}) ; i_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \quad 287 \quad(\varepsilon \quad 31100) ; \delta_{\mathrm{H}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{MeC}_{6} \mathrm{H}_{4}\right), 2.65(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 7.03-$ $7.77(9 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 9.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $9.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$; $m / z 291\left(\mathrm{M}^{+}\right)$, and $199\left(\mathrm{M}^{+}-\mathrm{MePh}\right)$.

Compound 8b: ($54 \mathrm{mg}, 32 \%$), m.p. $226-227^{\circ} \mathrm{C}$ (from EtOAc) (Found: C, 71.4; $\mathrm{H}, 6.0 ; \mathrm{N}, 10.2 . \mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 71.62$; $\mathrm{H}, 6.01 ; \mathrm{N}, 10.44 \%$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3260(\mathrm{NH}), 1675$ and $1635(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.42\left(3 \mathrm{H}, \mathrm{s}, M e \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $4.38\left(2 \mathrm{H}, \mathrm{d}, J 5.3, \mathrm{CH}_{2} \mathrm{NH}\right), 7.09-7.79(10 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, \mathrm{NH})$ and $8.95(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; m / z 268\left(\mathrm{M}^{+}\right), 148\left(\mathrm{M}^{+}-\mathrm{CONHPh}\right)$ and $119\left(\mathrm{M}^{+}-\mathrm{NHCH}_{2} \mathrm{CONHPh}\right)$.

2-(p-Methoxyphenyl)-5-methyl- N^{\prime}-phenyl-1H-imidazole-4carboxamide 6i.-A mixture of compound 5 i ($250 \mathrm{mg}, 0.75$ mmol) and 10% ethanolic potassium hydroxide ($15 \mathrm{~cm}^{3}$) was treated by the same procedure as described for compound $\mathbf{6 g}$ to give the amide $6 \mathbf{i}(89 \mathrm{mg}, 39 \%)$, m.p. $218-220^{\circ} \mathrm{C}$ (from benzene) (Found: C, 70.2; H, 5.3; N, 13.7. $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires C, 70.34; $\mathrm{H}, 5.57 ; \mathrm{N}, 13.67 \%) ; v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3320(\mathrm{NH})$ and 1650 $(\mathrm{C}=\mathrm{O}) ; \quad \lambda_{\max }(\mathrm{EtOH}) / \mathrm{nm} \quad 287 \quad(\varepsilon \quad 32900) ; \quad \delta_{\mathrm{H}}(100 \quad \mathrm{MHz} ;$
$\left.\mathrm{CDCl}_{3}\right) 2.60(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 3.84(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 6.90-7.85(9 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}), 9.19(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and $10.03(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}) ; m / z 307$ $\left(\mathrm{M}^{+}\right)$and $215\left(\mathbf{M}^{+}-\mathrm{NHPh}\right)$. A trace amount of p-anisamide 8c* was separated, m.p. $165-167^{\circ} \mathrm{C}$ (lit.,* $165-167^{\circ} \mathrm{C}$); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 3500,3380(\mathrm{NH})$, and $1680(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(100$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right)^{*} 3.86(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 5.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NH}_{2}\right)$ and $7.26-$ $7.83(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 151\left(\mathrm{M}^{+}\right)$and $135\left(\mathrm{M}^{+}-\mathrm{NH}_{2}\right)$.

5-Methyl-2-(p-nitrophenyl)- N^{\prime}-phenyl-1 H -imidazole-4-carboxamide $\mathbf{6 j}$.-A mixture of compound $\mathbf{5 j}$ ($200 \mathrm{mg}, 0.57 \mathrm{mmol}$) and 10% ethanolic potassium hydroxide $\left(15 \mathrm{~cm}^{3}\right)$ was treated by the same procedure as described for compound 6 g to give compounds $\mathbf{6 j}$ and 4.

Compound 6 j : ($46 \mathrm{mg}, 25 \%$), m.p. $>300^{\circ} \mathrm{C}$ (Found: C, 63.4; $\mathrm{H}, 4.3 ; \mathrm{N}, 17.35 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}_{3}$ requires $\mathrm{C}, 63.35 ; \mathrm{H}, 4.38 ; \mathrm{N}$, $17.38 \%) ; \quad v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} \quad 3450 \quad(\mathrm{NH})$ and $1650 \quad(\mathrm{C}=\mathrm{O})$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \quad 271 \quad(\varepsilon \quad 18400)$ and $353 \quad(\varepsilon 17200) ; \delta_{\mathrm{H}}$ [100 MHz; $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}\right] 2.61(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 7.08-7.78(5 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 8.20-8.42(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}, \mathrm{NH})$ and $9.68(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}) ; m / z$ 322 (M^{+}).

Compound 4: $(78 \mathrm{mg}, 65 \%$).
2-Ethoxymethyl-5-methyl- N^{\prime}-phenyl-1 H -imidazole-4-carbox-amide.-A mixture of compound $\mathbf{5 k}(250 \mathrm{mg}, 0.90 \mathrm{mmol})$ and 10% ethanolic potassium hydroxide $\left(15 \mathrm{~cm}^{3}\right)$ was treated by the same procedure as described for compound 6 g to give compounds 6 k and 4.

Compound 6k: $(91 \mathrm{mg}, 39 \%$) as a glutinous oil (Found: 259.1319. $\mathrm{M}^{+}, \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{M}, 259.1320$); $v_{\text {max }}{ }^{-}$ $\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3360(\mathrm{NH})$ and $1640(\mathrm{C}=\mathrm{O}) ; \lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm}$ $269(\varepsilon 23100) ; \delta_{\mathrm{H}}\left(270 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.27(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{2} \mathrm{Me}$), $2.63(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 3.62\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 4.55(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{O}\right), 7.05-7.69(5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.95(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$ and 9.38 (1 H, br s, NH); m/z $259\left(\mathrm{M}^{+}\right)$and $167\left(\mathrm{M}^{+}-\mathrm{NHPh}\right) .4:(60$ $\mathrm{mg}, 33 \%$).

2-Dimethylaminomethyl-5-methyl- N^{\prime}-phenyl-1 H -imidazole-4carboxylate 6l.-A mixture of compound 51 ($250 \mathrm{mg}, 0.87$ mmol) and 10% ethanolic potassium hydroxide ($12 \mathrm{~cm}^{3}$) was treated by the same procedure as described for compound $\mathbf{6 g}$ to give the amide $61\left(205 \mathrm{mg}, 91 \%\right.$), m.p. $175-177^{\circ} \mathrm{C}$ (Found: C,
64.9; $\mathrm{H}, 7.1 ; \mathrm{N}, 21.65 . \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$ requires $\mathrm{C}, 65.09 ; \mathrm{H}, 7.02 ; \mathrm{N}$, 21.69%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3350(\mathrm{NH})$ and $1675 \quad(\mathrm{C}=\mathrm{O})$; $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} \quad 269 \quad\left(\begin{array}{lllll}\varepsilon & 20700\end{array}\right) ; \quad \delta_{\mathrm{H}}\left(100 \quad \mathrm{MHz} ; \quad \mathrm{CDCl}_{3}\right)$ $2.30\left(6 \mathrm{H}, \mathrm{s}, \mathrm{NMe}_{2}\right), 2.61(3 \mathrm{H}, \mathrm{s}, 5-\mathrm{Me}), 3.52\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{~N}\right)$, 7.05-7.70 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 8.98(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH})$ and $9.75(1 \mathrm{H}$, br s, NH) ; $m / z 258\left(\mathrm{M}^{+}\right), 215\left(\mathrm{M}^{+}-\mathrm{NMe}_{2}\right)$ and $166\left(\mathrm{M}^{+}-\right.$ NHPh).

Acknowledgements

We are grateful to Misses T. Naito, S. Kato and T. Nishiguchi of this Faculty for elemental analyses and ${ }^{1} \mathrm{H}$ NMR measurements, and to Mr. H. Muranishi for assisting part of this work.

References

1 Part of this paper has been reported as a preliminary communication: T. Ueda, I. Matsuura, N. Murakami, S. Nagai, J. Sakakibara and M. Goto, Tetrahedron Lett., 1988, 29, 4607.
2 D. J. Brown, The Pyrimidines, Interscience, New York, 1962; D. J. Brown, R. F. Evans and T. J. Batterham, The Chemistry of Heterocyclic Compounds. The Pyrimidines supplement I, ed. by A. Weissberger and E. C. Taylar, Wiley-Interscience Publishers, New York, 1970; R. M. Achenson, An Introduction to the Chemistry of Heterocyclic Compounds, Wiley-Interscience, New York, 3rd edn., 1976, p. 395.
3 T. Ueda and J. Sakakibara, Chem. Pharm. Bull., 1984, 32, 2863.
4 R. G. Dinkinson, N. W. Jacobsen and R. G. Gills, Aust. J. Chem., 1975, 28, 859; K. Hirota, K. A. Watanabe and J. J. Fox, J. Org. Chem., 1978, 43, 1193; K. Hirota, K. Kitade, K. Shimada and Y. Maki, J. Org. Chem., 1985, 50, 1512; K. Hirota, K. Kitade, S. Senda, M. J. Halat, K. A. Watanabe and J. J. Fox, J. Am. Chem. Soc., 1979, 101, 4423; I. Saito, H. Sugiyama and T. Matsuura, J. Am. Chem. Soc., 1983, 105, 956; E. G. Lovett and D. Lipkin, J. Org. Chem., 1975, 40, 1722; J. Org. Chem., 1977, 42, 2574.
5 (a) S. Senda, K. Hirota and K. Banno, J. Med. Chem., 1972, 15, 471. (b) S. Senda, A. Suzuki, M. Honda and H. Fujimura, Chem. Pharm. Bull., 1958, 6, 482.
6 T. Ueda, J. Sakakibara and J. Nakagami, Chem. Pharm. Bull., 1983, 31, 4269.

7 J. V. Dubsky, Chem. Ber., 1917, 50, 1701.
Paper $1 / 02070$ F
Received 1st May 1991
Accepted 16th July 1991

[^0]: + Synthesis of compounds $\mathbf{5 a}, \mathbf{5 k}$ and $\mathbf{5 1}$ was previously reported (ref. 6)

[^1]: * M.p. and NMR spectrum were coincident with those written in the Aldrich catalogue (1990-1991) and The Aldrich Library of NMR Spectra Edition II, vol. 2, 348D.

[^2]: 5-Acetamido-1,3,6-trimethyluracil 2d.-5-Amino-1,3,6-tri-

